What is the value of xdf/dx+ydf/dy+zdf/dz ? If u =

Register or Login to View the Solution or Ask a Question

Question : If u=sin^(-1){(x+2y+3z)/(x^8+y^8+z^8)} then find the value of xdf/dx+ydf/dy+zdf/dzSolution : If \[u=sin^{-1}\left(\frac{x+2y+3z}{x^8+y^8+z^8}\right)\] then=>\[ sin{\left(u\right)}=\frac{x+2y+3z}{x^8+y^8+z^8}\]Differentiate with respect to x\[cos{\left(u\right)}\frac{\partial u}{\partial x}=\frac{\left(x^8+y^8+z^8\right).1-\left(x+2y+3z\right).\left(8x^7\right)}{\left(x^8+y^8+z^8\right)^2}……….(1)\]Similarly differentiating with respect to y and z \[cos{\left(u\right)}\frac{\partial u}{\partial y}=\frac{\left(x^8+y^8+z^8\right).2-\left(x+2y+3z\right).\left(8y^7\right)}{\left(x^8+y^8+z^8\right)^2}……….(2)\]\[cos{\left(u\right)}\frac{\partial u}{\partial z}=\frac{\left(x^8+y^8+z^8\right).3-\left(x+2y+3z\right).\left(8z^7\right)}{\left(x^3+y^3+z^3\right)^2}……….(2)\]Multiplying eqns (1) ,(2) and (3) by x,…

This Question has been answered. 

Please Subscribe to See Answer or To Get Homework Help


Register or Login to View the Solution or Ask a Question