What is F(x)F(y) for the given matrix F(x)

Introduction: Here we shall find F(x)F(y) for the given matrix F(x). Question : If \[F(x)\ =\left(\begin{matrix}cos(x)\ &-sin(x)\ &0\\sin(x)&cos(x)&0\\0&0&1\end{matrix}\right)\] then F(x)F(y) is equal to \[F\left(x+y\right)\] \[F\left(x-y\right)\] \[F\left(x\right)+F\left(y\right)\] \[F\left(x\right)-F\left(y\right)\] Solution : Given matrix \[F\left(x\right)=\left(\begin{matrix}\cos{\left(x\right)}&-\sin{\left(x\right)}&0\\\sin{\left(x\right)}&\cos{\left(x\right)}&0\\0&0&1\end{matrix}\right)\] then \[ F(y)\ =\left(\begin{matrix}cos(y)\ &-sin(y)\ &0\\sin(y)&cos(y)&0\\0&0&1\end{matrix}\right)\] we get…

This Question has been answered. 

Please Subscribe to See Answer or To Get Homework Help