The function g(x)=f(x)/x where x not equal to 0 has an extreme value

Question :: The function g(x)=f(x)/x where x not equal to 0 has an extreme value, when \[f^\prime\left(x\right)=f\left(x\right)\] 2. \[g^\prime\left(x\right)=f\left(x\right)\] 3.\[f\left(x\right)=0\] 4. \[g\left(x\right)=f^\prime\left(x\right)\] Solution : Given Function \[g\left(x\right)=\frac{f\left(x\right)}{x},\ x\neq0\] has an extreme value if \[g^\prime\left(x\right)=0\] \[\frac{xf^\prime\left(x\right)-f(x)}{x^2}=0\] \[xf^\prime\left(x\right)=f\left(x\right)\] \[f^\prime\left(x\right)=\frac{f\left(x\right)}{x}=g\left(x\right)\] Thus correct option…

This Question has been answered. 

Please Subscribe to See Answer or To Get Homework Help