Solved Sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+…

Question : Sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+… Solution : Let the Sum of the series is \[S=\ \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\ldots..\] \[=\left(\frac{1}{1}-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots.\] \[=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots.\right)+\left(-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots..\right)\] \[=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots.\right)+\left(-1+1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots..\right)\] We shall use formula of the series \[\log{\left(1+x\right)}=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots..\] where we shall substitute x=1 \[\log{\left(1+1\right)}=\log{\left(2\right)}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots.\] \[S=\log{\left(2\right)}+\left(-1+\log{\left(2\right)}\right)=2\log{\left(2\right)}-1\] \[\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\ldots..\ =2\log{\left(2\right)}-1\] is the…

This Question has been answered. 

Please Subscribe to See Answer or To Get Homework Help