Question : Find row reduce form of the following matrix \[M=\left(\begin{matrix}3&-1&2&4\\9&-7&1&-2\end{matrix}\right)\] Solution : Given matrix \[M=\left(\begin{matrix}3&-1&2&4\\9&-7&1&-2\end{matrix}\right)\] To find rank of M Step 1: Applying elementary row transformation \(R_2\rightarrow R_2-3R_1\) \[M~\left(\begin{matrix}3&-1&2&4\\0&-4&-5&-14\\\end{matrix}\right)\] Step 2 : applying elementary row transformation \(R_1\rightarrow R_1-4R_2\) \[M~\left(\begin{matrix}3&0&22&60\\0&-4&-5&-14\end{matrix}\right)\]…
Posted inLinear Algebra