Solved Euler Mayurma Method to solve SDE dx=(5-x)/(7-t)dt+dWt

Register or Login to View the Solution or Ask a Question

Introduction : In this Euler Mayurma Method is applied to solve stochastic differential equation dx=(5-x)/(7-t)dt+dWt

Question : Using Euler Mayurma Method to solve SDE

\[dx=\frac{5-x}{7-t}dt+dW_t\]

subject to initial condition

[ x\left(0\right)=1]

Solution :

\[dx=\frac{5-x}{7-t}dt+dW_t\]

Subject to \[ x\left(0\right)=1\]

So

\[t_0=0 , X_0=1\]

Euler Mayurma Method

Step 1:

\[X_1=X_0+\left(\frac{5-X_0}{7-t_0}\right)∆t+W1-W0\]

Using time-interval ∆t=0.1 and random numbers for Weiner Process

\[W_0=0,\ W_1=\frac{1}{2}\]

\[X_1=1+\left(\frac{5-1}{7-0}\right)0.1+\left(1-0\right)=2.057\]

Step 2:

\[X_2=X_1+\left(\frac{5-X_1}{7-t_1}\right)∆t+W2-W1\]

Now

\[t_1=t_0+∆t=0.1\]

and random numbers

\[W_1=\frac{1}{3},\ W_2=\frac{1}{2}\]

for Weiner Process

\[X_1=2.057+\left(\frac{5-2.057}{7-0.1}\right)0.1+\left(\frac{1}{2}-\frac{1}{2}\right)=2.0996\]


Register or Login to View the Solution or Ask a Question

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply