percent relative error in second derivative approximation

Register or Login to View the Solution or Ask a Question

Introduction : In this solution, we will calculate percent relative error in second derivative approximation. First we derive formula for second derivative approximation using Taylor series.

Question: Derive following formula for second derivative approximation using Taylor series

\[f(x_i+∆x)+f(x_i-∆x)=2f(x_i)+∆x^2f”(x_i)\]

use this formula for the function

\[f\left(x\right)=e^{2x}\left(3x^2-6x+2\right)\]

to calculate percent relative error in second derivative approximation using following data in the table

xF(x)
1.61.96
1.714.08
1.833.67

Solution:

We know Taylor series expansion

\[f(x_i+∆x)=f(x_i)+∆xf'(x_i)+\frac{∆x^2}{2!}f”(x_i)+O(∆x^3) \] (1)

similarly

\[f(x_i-∆x)=f(x_i)-∆xf'(x_i)+\frac{∆x^2}{2!}f”(x_i)-O(∆x^3) \] (2)

Adding equations (1) and (2)

\[f(x_i+∆x)+f(x_i-∆x)=2f(x_i)+2*\frac{∆x^2}{2!}f”(x_i)+O(∆x^4)\]

or

\[f(x_i+∆x)-2f(x_i)+f(x_i-∆x)=∆x^2f”(x_i)+O(∆x^4)\]

dividing by ∆x^2, we get

\[f^{\prime\prime}\left(x_i\right)=\frac{f(x_i+∆x)-2f(x_i)+f(x_i-∆x)}{∆x^2}+O(∆x^2)\]

is the required formula for second derivative approximation

clearly Order of accuracy of this formula is

\[O(∆x^2)\]

now for the given function

\[f\left(x\right)=e^{2x}\left(3x^2-6x+2\right)\]

and from the data table, we calculate

\[f^{\prime\prime}\left(1.7\right)=\frac{f\left(1.8\right)-2f\left(1.7\right)+f\left(1.6\right)}{{0.1}^2}\]

\[f^{\prime\prime}\left(1.7\right)=\frac{33.67-2\ast14.08+1.96}{0.01}\]

=747

Now we find Exact first derivative

\[f'(x) =2e^{2x}\left(3x^2-6x+2\right)+e^{2x}\left(6x-6\right)\]

and the exact second derivative

\[f^{\prime\prime}\left(x\right)=e^{2x}\left(12x^2-10\right)\]

now calculating it’s exact value

\[f^{\prime\prime}\left(1.7\right)=e^{2\ast1.7}\left(12\ast{1.7}^2-10\right)\]

\[f^{\prime\prime}\left(1.7\right)=739.514\]

So the % Relative error

\[=\left|\frac{approximate-exact}{exact}\right|\ast100%\]

\[=\left|\frac{747-739.514}{739.514}\right|\ast100%\]

\[=0.011\ast100%\]

=1.1%


Register or Login to View the Solution or Ask a Question

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply