Modified Euler Method to solve initial value problem y'(t)=1/(1+2*t^2),y(0)=1

Register or Login to View the Solution or Ask a Question

Introduction: In this question, we apply modified Euler Method to solve initial value problem y'(t)=1/(1+2*t^2),y(0)=1

Question : Apply modified Euler Method to solve initial value problem

\[y’\left(t\right)=\frac{1}{(1+2*t^{2})}, y(0)=1\]

for \(0\le t \le 5 \) with stepsize h =0.5 and also find analytical solution and compare with numerical solutions and graph the solutions.

Solution :

\[y’\left(t\right)=\frac{1}{(1+2*t^{2})}, y(0)=1\]

let \(f(t, y) =\frac{1}{(1+2*t^{2})}, t_0=0, y_0 =1\)

analytical solution of the IVP is

\[y(t) =\sqrt{2}\frac{tan^{-1}(\sqrt{2}t)}{2}+1\]

Modified Euler method

\[y_{i+1}=y_{i}+\frac{h}{2}\left(f(t_{i},y_{i})+f(t_{i+1},y_{i}+h*f(t_{i},y_{i}))\right), i=0,12,3,….,n\]

where \(t_{i+1}=t_i+h\)

stepsize \(h =0.5\)

to find \(y(5)\) we

iteration ( i)\(t_i\)\(y_i\)\(y_{analytical}\)Approximate error \(\left|y_i-y_{analytical}\right|\)
0 0 1.00001.00000
1   0.5000   1.4167   1.0000   0.018543
2   1.0000   1.6667   1.4352   0.008844
3   1.5000   1.7955   1.6755   0.003778
4   2.0000   1.8687   1.7992   0.001733
5   2.5000   1.9150   1.8704   0.000829
6   3.0000   1.9467   1.9158   0.000382
7   3.5000   1.9696   1.9470   0.000140
8   4.0000   1.9870   1.9698   0.000002
9   4.5000   2.0006   1.9870   0.000090
10   5.0000   2.0115   2.0005   0.000147
     

Register or Login to View the Solution or Ask a Question

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply