Introduction: In this question, we apply modified Euler Method to solve initial value problem y'(t)=1/(1+2*t^2),y(0)=1
Question : Apply modified Euler Method to solve initial value problem
\[y’\left(t\right)=\frac{1}{(1+2*t^{2})}, y(0)=1\]
for \(0\le t \le 5 \) with stepsize h =0.5 and also find analytical solution and compare with numerical solutions and graph the solutions.
Solution :
\[y’\left(t\right)=\frac{1}{(1+2*t^{2})}, y(0)=1\]
let \(f(t, y) =\frac{1}{(1+2*t^{2})}, t_0=0, y_0 =1\)
analytical solution of the IVP is
\[y(t) =\sqrt{2}\frac{tan^{-1}(\sqrt{2}t)}{2}+1\]
Modified Euler method
\[y_{i+1}=y_{i}+\frac{h}{2}\left(f(t_{i},y_{i})+f(t_{i+1},y_{i}+h*f(t_{i},y_{i}))\right), i=0,12,3,….,n\]
where \(t_{i+1}=t_i+h\)
stepsize \(h =0.5\)
to find \(y(5)\) we
iteration ( i) | \(t_i\) | \(y_i\) | \(y_{analytical}\) | Approximate error \(\left|y_i-y_{analytical}\right|\) |
0 | 0 | 1.0000 | 1.0000 | 0 |
1 | 0.5000 | 1.4167 | 1.0000 | 0.018543 |
2 | 1.0000 | 1.6667 | 1.4352 | 0.008844 |
3 | 1.5000 | 1.7955 | 1.6755 | 0.003778 |
4 | 2.0000 | 1.8687 | 1.7992 | 0.001733 |
5 | 2.5000 | 1.9150 | 1.8704 | 0.000829 |
6 | 3.0000 | 1.9467 | 1.9158 | 0.000382 |
7 | 3.5000 | 1.9696 | 1.9470 | 0.000140 |
8 | 4.0000 | 1.9870 | 1.9698 | 0.000002 |
9 | 4.5000 | 2.0006 | 1.9870 | 0.000090 |
10 | 5.0000 | 2.0115 | 2.0005 | 0.000147 |
