how to convert radian to degrees ?? Answer : Convert degree to radian Since 1 revolution in a unit circle satisfies 360° = 2π radians Dividing by 2 both…
Question: how to find the value of sin(75)? Solution : We shall write 750=450+300 And apply Sin(A+B) formula Sin(A+B) =Sin(A)Cos(B)+Cos(A)Sin(A) Therefore Sin(750) = Sin(450+300) =Sin(450)Cos(300)+Cos(450)Sin(300) Now we shall substitute following…
Question: how to find the value of sin(15)? Solution : We shall write 150=450-300 And apply Sin(A-B) formula Sin(A-B) =Sin(A)Cos(B)-Cos(A)Sin(A) Therefore Sin(150) = Sin(450-300) =Sin(450)Cos(300)-Cos(450)Sin(300) Now we shall substitute following…
Question : What is the value of Cos(75)? Solution : We shall write \[75^0=45^0+30^0 \] And apply Cos(A+B) formula \[Cos(A+B) =Cos(A)Cos(B)-Sin(A)Sin(B)\] Therefore \[Cos(75^0) = Cos(45^0+30^0) =Cos(45^0)Cos(30^0)-Sin(45^0)Sin(30^0) \] Now we shall…
Question: What is the value of Cos(15)? Solution : We shall write \[15^0=45^0-30^0 \] And apply Cos(A-B) formula \[Cos(A-B) =Cos(A)Cos(B)+Sin(A)Sin(B)\] Therefore \[Cos(15^0) = Cos(45^0-30^0) =Cos(45^0)Cos(30^0)+Sin(45^0)Sin(30^0) \] Now we shall substitute…
Question: What is the value of Sin(75)? Solution : We shall write \[75^0=45^0+30^0 \] And apply Sin(A+B) formula \[Sin(A+B) =Sin(A)Cos(B)+Cos(A)Sin(A)\] Therefore \[Sin(75^0) = Sin(45^0+30^0) =Sin(45^0)Cos(30^0)+Cos(45^0)Sin(30^0) \] Now we shall substitute…
Question : Find the limit tan^-1(x)/x as x approaches 0 Solution : We shall let the limit is \[L={\rm limit}_{x\rightarrow0}{\frac{\tan^{-1}{\left(x\right)}}{x}} Since \tan^{-1}{\left(0\right)}=0\ Hence \frac{\tan^{-1}{\left(0\right)}}{0}=\frac{0}{0}\] We can apply L’Hospital rule, that…
Question : limit of sin^-1(x)/x as x approaches to 0 Solution : We shall let the limit is \[L={\rm limit}_{x\rightarrow0}{\frac{\sin^{-1}{\left(x\right)}}{x}}\] Since \[\sin^{-1}{\left(0\right)}=0\ Hence \frac{\sin^{-1}{\left(0\right)}}{0}=\frac{0}{0}\] We can apply L’Hospital rule, that…