How to find the solution of ode y”-9y’+20y=e^xcos(x) satisfying y(0)=0 y'(0)=0 by variation of parameters method

variation of parameters method
Register or Login to View the Solution or Ask a Question

Question : Find the solution of ode y”-9y’+20y=e^xcos(x) satisfying y(0)=0 y'(0)=0 by variation of parameters method.

Solution :

\[y^{\prime\prime}-9y^\prime+20y=e^x\cos{\left(x\right)} \] (1)

To find complementary solution of ode (1) we solve corresponding homogeneous eqn of (1)

\[y^{\prime\prime}-9y^\prime+20y=0\]

It’s characteristics equation is

\[m^2-9m+20=0\] \[m^2-5m-4m+20=0\]

\[m\left(m-5\right)-4\left(m-5\right)=0\]

\[\left(m-5\right)\left(m-4\right)=0\]

m=4, 5 So

\[y_1\left(x\right)=e^{4x},\ y_{2\left(x\right)}=e^{5x}\]

are fundamental solutions.

Thus complementary solution of ode (1) is

\[y_c\left(x\right)=c_1y_1\left(x\right)+c_2y_2\left(x\right)=e^{4x}c_1+e^{5x}c_2\]

Where \[c_1,\ c_2 \]are arbitrary constants.

Now to find Particular solution by variation of parameters method

Let \[y_p=A\left(x\right)y_1\left(x\right)+B\left(x\right)y_2\left(x\right)\]

\[y_p\left(x\right)=\ e^{4x}A\left(x\right)+e^{5x}B\left(x\right)\]

Where

\[A\left(x\right)=-\int{\frac{y_2\left(x\right)f\left(x\right)}{W(y_1,y_2)}dx}\]

And

\[B\left(x\right)=\int{\frac{y_1\left(x\right)f\left(x\right)}{W(y_1,y_2)}dx}\]

Where Wronksian

\[W\left(y_1.\ y_2\right)=\left|\begin{matrix}y_1&y_2\\y_1\prime&y_2\prime\end{matrix}\right|\]

\[=\left|\begin{matrix}e^{4x}&e^{5x}\\{4e}^{4x}&5e^{5x}\end{matrix}\right|\]

\[=5e^{9x}-4e^{9x}=e^{9x}\]

Hence

\[A\left(x\right)=-\int{\frac{e^{5x}e^x\cos{\left(x\right)}}{e^{9x}}dx}\]

\[=-\int{e^{-3x}\cos{\left(x\right)}dx}\]

\[=-\frac{1}{10}e^{-3x}\left(-3Cos\left(x\right)+Sin\left(x\right)\right)\]

\[B\left(x\right)=\int{\frac{y_1\left(x\right)f\left(x\right)}{W(y_1,y_2)}dx}\]

\[=\int{\frac{e^{4x}e^x\cos{\left(x\right)}}{e^{9x}}dx}\]

\[=\int{e^{-4x}\cos{\left(x\right)}dx}\] \[=\frac{1}{17}e^{-4x}\left(-4Cos\left(x\right)+Sin\left(x\right)\right)\]

Therefore particular solution of ode (1) is

\[y_p\left(x\right)=\ e^{4x}A\left(x\right)+e^{5x}B\left(x\right)\]

\[=-\frac{1}{10}e^x\left(-3Cos\left(x\right)+Sin\left(x\right)\right)+\frac{1}{17}e^x\left(-4Cos\left(x\right)+Sin\left(x\right)\right)\]

\[=\frac{1}{170}e^x\left(11Cos\left(x\right)-7Sin\left(x\right)\right)\]

So general solution of ode (1) is

\[y\left(x\right)=y_c\left(x\right)+y_p\left(x\right)\]

\[y\left(x\right)=e^{4x}c_1+e^{5x}c_2+\frac{1}{170}e^x\left(11Cos\left(x\right)-7Sin\left(x\right)\right)\] (2)

Substituting x = 0 in eqn (2) and using y(0)=0

\[c_1+c_2=-\frac{11}{170}\] (3)

And differentiating eqn (2) with respect to x

\[y^\prime\left(x\right)=4e^{4x}c_1+5e^{5x}c_2+\frac{1}{170}e^x\left(-7Cos\left(x\right)-11Sin\left(x\right)\right)+\frac{1}{170}e^x\left(11Cos\left(x\right)-7Sin\left(x\right)\right)\]

Put x =0 and using y’(0)=0

\[4c_1+5c_2=-\frac{2}{85} \] (4)

Solving eqns (3) and (4)

\[c_1=-\frac{3}{10},\ c_2=\frac{4}{17}\]

Put these values into eqn (2) to get the solution of eqn (1) is

\[y\left(x\right)=-\frac{3}{10}e^{4x}+\frac{4}{17}e^{5x}+\frac{1}{170}e^x\left(11Cos\left(x\right)-7Sin\left(x\right)\right)\]


Register or Login to View the Solution or Ask a Question

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply