Register or Login to View the Solution or Ask a Question
Question : how do you find inverse Laplace transform of 1/(s^2+2s-3)?
Solution :
Given \[f(s) =\frac{1}{(s^2+2s-3)}\]
It’s factorization is given as
\[ f(s)=\frac{1}{(s+3)(s-1)} \]
\[=> f(s)=\frac{1}{4}\left(\frac{1}{(s-1)}- \frac{1}{(s+3)}\right) \]
Now using inverse Laplace transform both sides
\[L^-1\left(f(s)\right) = \frac{1}{4}\left(L^-1\left(\frac{1}{s-1}\right)-L^-1\left(\frac{1}{s+3}\right)\right)\]
By inverse Laplace transform formulas
\[L^-1\left(\frac{1}{s+a}\right)=e^{-at}, L^-1\left(\frac{1}{s-a}\right)=e^{at}\]
\[=> f(t)=\frac{1}{4}\left(e^{t}-e^{-3t}\right)\]
is the required inverse Laplace transform of the f(s)
Register or Login to View the Solution or Ask a Question