Find variance and standard deviation of the following frequency distribution

Register or Login to View the Solution or Ask a Question

Question : Find variance and standard deviation of the following frequency distribution.

xFrequency (f)
1.520
2.025
3.580
5.050
5.525
7.210
5.35

Solution :

Sum of the frequencies
\[N=\sum_{i=1}^{N}f_i=215\]

(i)
Arithmetic average (mean)
\[\bar{x}=\frac{\sum_{i=1}^{N}{f_i\ast x_i}}{N}=\frac{30+50+280+250+137.5+72+26.5}{215}=\frac{846}{215}=3.93\]

frequency distribution table

xFrequency (f)(x-x ̅)(x-x ̅)^2f*(x-x ̅)^2
1.520-2.435.92118.57
2.025  -1.93    3.74    93.59
3.580  -0.43    0.18    15.12
5.050   1.06    1.13    56.72
5.525   1.56    2.44    61.23
7.210   3.26   10.66   106.60
5.35   1.36    1.86     9.31
     




(ii) Variance
\[V=\frac{\sum_{i=1}^{N}{f_i\ast\left(x_i-\bar{x}\right)^2\ }}{N-1}=\frac{118.57+93.59+15.12+\ 56.72+\ 61.23+106.60+9.31}{215-1}\]
\[V=\frac{461.19}{214}=2.1\] Variance = 2.15

(iii)
Standard deviation
σ=√variance=√2.15=1.46


Register or Login to View the Solution or Ask a Question

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply