Register or Login to View the Solution or Ask a Question
Introduction : Euler Method for system of differential equationsQuestion :Solution:\[\left(\begin{array}{c}y_1′ \\y_2′ \end{array}\right)=\left(\begin{array}{cc}-t^2 & t \\2-t & 0 \end{array}\right)\left(\begin{array}{c}y_1 \\y_2 \end{array}\right)+\left(\begin{array}{c}1\\t \end{array}\right)\]f(t,y_1,y_2 )=-t^2 y_1+ty_2+1 g(t,y_1,y_2 )=(2-t) y_1+0y_2+t t_0=1 y_1,0=2,y_2,0=0 Euler method t_0=1 y_1,0=2,y_2,0=0 h=0.01 y_(1,n+1)=y_(1,n)+hf(t_n,y_(1,n),y_(2,n)) y_(2,n+1)=y_(2,n)+hf(t,y_(1,n),y_(2,n)) Step 1: n=0 y_1,1=y_1,0+hf(t_0,y_1,0,y_2,0 )=2+0.01*(-1^2*2+1*0+1)=1.99…
This Question has been answered.
Please Subscribe to See Answer or To Get Homework Help
Register or Login to View the Solution or Ask a Question