Double Integral : A double integral is an integral of integral that is it’s integrand is an integral.

If we integrate a function \(z = f(x, y)\) with respect to variables \(x \) and \(y\) such that \( (x, y)\in D \subseteq R^2\) then such an integrating process is called a double integral.

Where \(D\) is domain of the function \(f(x, y)\).

It is denoted as \[\int\int_{D}f(x,y)dxdy\]

Double integral gives the volume under the surface \(z = f(x, y)\) such that \( (x, y)\in D\)

Example (1):

Evaluate \(\int_{y=2}^{3}\int_{x=0}^{3}(2+xy)dxdy\)

Solution:

Step 1: First evaluating inner integral

Since inner integral is with respect to \(x\). Hence

\[A(y) = \int_{x=0}^{3}(2+xy)dx = \left[2x+\frac{x^2y}{2}\right]_{x=0}^{3}\]

\[ =2*3+\frac{3^2y}{2}-0-0 \]

\[A(y) =6+\frac{9y}{2}\]

Step 2 Evaluating outer integral

Since outer integral is with respect to \(y\). Hence

\[\int_{y=2}^{3}A(y)dy =\int_{y=2}^{3}(6+\frac{9y}{2})dy\]

\[= \left[6y+\frac{9y^2}{4}\right]_{2}^{3}\]

\[=6*3+\frac{9*3^2}{4} -6*2-\frac{9*2^2}{4}\]

\[ =\frac{69}{4} \]

Therefore \(\int_{y=2}^{3}\int_{x=0}^{3}(2+xy)dxdy =\frac{69}{4}\)

Example (2):

Evaluate \(\int_{x=0}^{\frac{\pi}{2}}\int_{y=0}^{1}y cos(x)dydx\)

Solution:

Step 1: First evaluating inner integral

Here inner integral is with respect to \(y\). Hence

\[A(x) = \int_{y=0}^{1}(ycos(x))dy =cos(x) \left[\frac{y^2}{2}\right]_{y=0}^{1}\]

\[ =cos(x)(\frac{1^2}{2}-0 )\]

\[A(x) =\frac{cos(x)}{2}\]

Step 2 Evaluating outer integral

Now outer integral is with respect to \(x\). Hence

\[\int_{x=0}^{\frac{\pi}{2}}A(x)dx =\int_{x=0}^{\frac{\pi}{2}}(\frac{cos(x)}{2})dy\]

\[= \left[\frac{sin(x)}{2}\right]_{x=0}^{\frac{\pi}{2}}\]

\[=\frac{sin(\frac{\pi}{2})}{2}-\frac{sin(0)}{2}\]

\[ =\frac{1}{2}-0 =\frac{1}{2}\]

Therefore \(\int_{x=0}^{\frac{\pi}{2}}\int_{y=0}^{1}y cos(x)dydx =\frac{1}{2}\)

\section{Order of Integration}

Order of integration of the double integral can be understood as follows

\[\int\int_{D_1}f(x,y)dydx= \int_{x=a}^{b}\left(\int_{y=f(x)}^{g(x)}f(x,y)dy\right)dx\]

that is inner integral is with respect to \(y\) and outer is with respect to \(x\).

\[\int\int_{D_2}f(x,y)dydx= \int_{y=c}^{d}\left(\int_{x=f(y)}^{g(y)}f(x,y)dx\right)dy\]

Here inner integral is with respect to \(x\) and outer is with respect to \(y\).

This is called order of integration.

Change of Order of Integration

We can evaluate \(\int\int_{D_1}f(x,y)dydx= \int_{x=a}^{b}\left(\int_{y=f(x)}^{g(x)}f(x,y)dy\right)dx\) by evaluating

\(\int\int_{D_2}f(x,y)dydx= \int_{y=c}^{d}\left(\int_{x=f(y)}^{g(y)}f(x,y)dx\right)dy\) after determining the domain \(D_2\) from \(D_1\).

Note : Change of order integration of the double integral does not change it’s value .

Example (1):

Evaluate \(\int\limits_{x = 0}^1 {\int\limits_{y = x}^1 {{y^4}{e^{x{y^2}}}dydx} }\) by changing order of integration.

Solution:

Let \(I = \int\limits_{x = 0}^1 {\int\limits_{y = x}^1 {{y^4}{e^{x{y^2}}}dydx} }\)

Step 1: changing order of integration

Since inner integral is with respect to \(x\). Hence

For \(I\) we have domain \(D_1 = \{(x, y) : 0\le x \le 1, x\le y\le 1 \}\)

Since \( x =0 , x = 1, y = x \Rightarrow y =0, y = 1, x = y \)

It can shown in the following graphs

After changing order of integration, we have

\[\int\limits_{x = 0}^1 {\int\limits_{y = x}^1 {{y^4}{e^{x{y^2}}}dydx} } = \int\limits_{y = 0}^1 {\int\limits_{x= 0}^y {{y^4}{e^{x{y^2}}}dxdy} }\]

Step 2: Evaluation

\[I = \int_{y=0}^{1}\left(\int_{x=0}^{y}y^4e^{xy^2}dx\right)dy\]

\[ =\int_{y=0}^{1}y^4\left[\frac{e^{xy^2}}{y^2}\right]_{x=0}^{y}dy \]

\[ =\int_{y=0}^{1}y^4\left[\frac{e^{xy^2}}{y^2}\right]_{x=0}^{y}dy \]

\[ =\int_{y=0}^{1}y^4\left[\frac{e^{y^3}}{y^2}-\frac{1}{y^2}\right]dy \]

\[ =\int_{y=0}^{1}\left[{y^2}{e^{y^3}}-{y^2}\right]dy \]

\[=\left[\frac{e^{y^3}}{3}-\frac{y^3}{3}\right]_{y=0}^{1}\]

\[ =\frac{1}{3} (e-2) \]

Thus \(\int\limits_{x = 0}^1 {\int\limits_{y = x}^1 {{y^4}{e^{x{y^2}}}dydx} } =\frac{1}{3} (e-2) \)

Example (2):

Evaluate \(\int_{x=0}^{1}\int_{y=x}^{1}sin(y^2)dydx\) by changing order of integration.

Solution:

Let \(I = \int_{x=0}^{1}\int_{y=x}^{1}sin(y^2)dydx\)

\[ =\int_{x=0}^{1}\left(\int_{y=x}^{1}sin(y^2)dy\right)dx \]

For the given double integral \(I\) we have range \(D_1 = \{(x, y) : 0\le x \le 1, x\le y\le 1 \}\)

From \( x =0 , x = 1, y = x , y = 1 \)

\(\Rightarrow y =0, y = 1, x = 0, x = y \)

Therefore after changing order of integration, limits for integration can be written as set \(D_2 = \{(x, y) : 0\le x \le y, 0\le y\le 1 \}\)is displayed in the following figure

Now we can write \(\int_{x=0}^{1}\left(\int_{y=x}^{1}sin(y^2)dy\right)dx=\int_{y=0}^{1}\left(\int_{x=0}^{y}sin(y^2)dx\right)dy\)

\[ = \int_{y=0}^{1}sin(y^2)\left(\int_{x=0}^{y}dx\right)dy\]

\[ =\int_{y=0}^{1}sin(y^2)\left[x\right]_{x=0}^{y}dy \]

\[ =\int_{y=0}^{1}sin(y^2)\left[y\right]dy \]

\[ =-\frac{1}{2} \left[\cos \left(y^2\right)\right]_{y=0}^{1} \]

\[ =-\frac{1}{2}\left[\cos \left(1\right) -\cos \left(0\right)\right] \]

\[=-\frac{1}{2}\left[\cos \left(1\right) -1\right]\]

\[ =\frac{1-\cos \left(1\right)}{2} \]

Thus \(\int_{x=0}^{1}\int_{y=x}^{1}sin(y^2)dydx=\frac{1-\cos \left(1\right)}{2} \)

Example 3 : Evaluate the following double integral

\[I=\int_{x=0}^{2}{\int_{y=x}^{2}\left(2-xy\right)dxdy}\]

Solution :

Let

\[I=\int_{x=0}^{2}{\int_{y=x}^{2}\left(2-xy\right)dxdy}\]

\[=\int_{x=0}^{2}\left(\int_{y=x}^{2}\left(2-xy\right)dy\right)dx\]

Integrating inner integral

\[I=\int_{x=0}^{2}{\left(2y-x\frac{y^2}{2}\right)_x^2dy}\]

Evaluating at the y limits

\[I=\int_{x=0}^{2}\left(\left(2*2-x\frac{2^2}{2}\right)-\left(2x-x\frac{x^2}{2}\right)\right)dx\]

Or

\[=\int_{x=0}^{2}\left(4-4x+\frac{x^3}{2}\right)dx\]

Now integrating with respect to x

\[=\left(4x-2x^2+\frac{x^4}{8}\right)_0^2\]

And evaluating at the x limits

\[=8-8+2-0+0-0=2\]

Thus the value of the double integral is

\[\int_{x=0}^{2}{\int_{y=x}^{2}\left(2-xy\right)dxdy}=2\]