Apply LU decomposition method to solve 2x+4y+2z=1,x+5y+2z=1,4x-y+9z=2

Question : Apply LU decomposition method to solve 2x+4y+2z=1,x+5y+2z=1,4x-y+9z=2 Answer : Writing system in the Matrix AX= b\[\left[\begin{matrix}2&4&2\\1&5&2\\4&-1&9\\\end{matrix}\right]\left(\begin{matrix}x\\y\\z\\\end{matrix}\right)=\left(\begin{matrix}1\\1\\2\\\end{matrix}\right)\]To find LU decomposition of A\[A=\left[\begin{matrix}2&4&2\\1&5&2\\4&-1&9\\\end{matrix}\right]\]Step 1A=LUWhere L is lower triangular matrix and…

Examples of Fourier series?

Examples of Fourier series Example 1 :Solution : Fourier series of \[f\left(t\right)=t+\pi,\ -2\pi<t<2\pi\] is given as \[f\left(t\right)=\frac{a_0}{2}+\sum_{n=1}^{\infty}{a_n\cos(nt)}+b_n\sin(nt)\] Where \[a_0=\frac{1}{2\pi}\int_{-2\pi}^{2\pi}f\left(t\right)dt=\frac{1}{2\pi}\int_{-2\pi}^{2\pi}{(t+\pi)dt}=\frac{1}{2\pi}4\pi^2=2\pi\] \[a_n=\frac{1}{2\pi}\int_{-2\pi}^{2\pi}f\left(t\right)dt=\frac{1}{2\pi}\int_{-2\pi}^{2\pi}{\left(t+\pi\right)\cos{\left(nt\right)}dt}=\frac{1}{2\pi}2πsin2nπ]n=sin2nπ]n\] Since \[\sin{\left(2n\pi\right)}=0\ for all n = 1,2, 3,4,5,…\] \[a_n=0, n…

how to find the solution of the ode y”-2y’+8y=e^x

how to find the solution of the ode y''-2y'+8y=e^x Solution : Given non homogeneous linear ode y''-2y'+8y=e^x \[y^{\prime\prime}-2y^\prime+8y=e^x\] Subject to initial conditions \[ y\left(0\right)=1,\ y^\prime\left(0\right)=-1 \] \[\frac{d^2y}{dx^2}-2\frac{dy}{dx}+8y=e^x\] Let D=d/dx \[D^2y-2Dy+8y=e^x\]…