Question : Find Inverse Laplace transform of Y(s)=1/((s^2+7s+9)) Solution : To Find Inverse Laplace transform of Y(s)=1/((s^2+7s+9)) Given function \[Y\left(s\right)=\frac{1}{(s^2+7s+9)}\] It can be written as \[Y\left(s\right)=\frac{1}{\left(s+\frac{7}{2}\right)^2-\frac{13}{4}}\] \[Y\left(s\right)=\frac{1}{\left(s+\frac{7}{2}\right)^2-\left(\sqrt{\frac{13}{2}}\right)^2}\] \[Y\left(s\right)=\frac{1}{\left(s+\frac{7}{2}-\sqrt{\frac{13}{2}}\right)\left(s+\frac{7}{2}+\sqrt{\frac{13}{2}}\right)}\] So the…